Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

An unexpected chelate conformation in trans- $\left[(R)-N, N^{\prime}\right.$-bis(α-phenylsalicyl-idene)propane-1,2-diaminato(2-)]-bis(1-methyl-1 H-imidazole- κN^{3})cobalt(III) perchlorate

Masakazu Hirotsu, ${ }^{\text {a }}$ * Masaaki Kojima, ${ }^{\text {b }}$ Kiyohiko Nakajima, ${ }^{\text {c }}$ Setsuo Kashino ${ }^{\text {b }}$ and Yuzo Yoshikawa ${ }^{\text {b }}$
${ }^{\text {a D Department of Chemistry, Faculty of Engineering, Gunma University, Kiryu, Gunma }}$ 376-8515, Japan, ${ }^{\text {b }}$ Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700-8530, Japan, and ${ }^{\text {}}$ Department of Chemistry, Aichi University of Education, Igaya, Kariya 448-8542, Japan
Correspondence e-mail: hirotsu@chem.gunma-u.ac.jp

Received 19 May 2004
Accepted 9 July 2004
Online 11 August 2004

The title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{ClO}_{4}$, contains an optically active tetradentate Schiff base ligand in an equatorial plane and two 1-methylimidazole ligands at apical positions. The central $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ chelate ring of the Schiff base ligand has an envelope structure with a λ conformation, which is different from the solution structure predicted from circular dichroism and ${ }^{1} \mathrm{H}$ NMR spectra.

Comment

Cobalt(II) Schiff base complexes have been extensively utilized as catalysts for the oxidation reaction of organic molecules (Mukaiyama \& Yamada, 1995; Fiammengo et al., 2002). It has been recognized that the formal potential of the $\mathrm{Co}^{\mathrm{III}} / \mathrm{Co}^{\mathrm{II}}$ couple is an important factor which determines the catalytic activity (Förster et al., 1996). The redox potential of a $\mathrm{Co}^{\mathrm{II}}-$ or $\mathrm{Co}^{\mathrm{III}}-$ Schiff base complex is affected not only by the electronic effect, but also by the steric effect of the substituent on the Schiff base ligand (Kitaura et al., 1987; Nishinaga et al., 1991; Hirotsu et al., 1994, 1996). In $\mathrm{Co}^{\mathrm{II}}$ complexes with $N, N^{\prime}-$ bis(salicylidene)-1,2-ethanediamine derivatives, an axially oriented substituent on the central ethylene backbone affords a more positive value of the redox potential compared with a complex with an equatorially oriented substituent. This was rationally demonstrated by investigating the intramolecular steric interactions of related $\mathrm{Co}^{\mathrm{III}}$-Schiff base complexes with two apical ligands $L,\left[\operatorname{Co}(\text { Schiff base })(L)_{2}\right]^{+}$(Hirotsu et al., 1996). For the title complex, (I), [Co\{7-Phsal-(R)-pn\}$\left.(\mathrm{Meim})_{2}\right] \mathrm{ClO}_{4}\left[\mathrm{H}_{2}\{7-\mathrm{Phsal}-(R)-\mathrm{pn}\}\right.$ is $(R)-N, N^{\prime}$-bis $(\alpha$-phenyl-salicylidene)-1,2-propanediamine and Meim is 1-methylimidazole], it has been reported that the central $\mathrm{N} \cdots \mathrm{N}$ chelate adopts the δ gauche conformation and the methyl group on the
ethylene backbone is axially oriented, on the basis of circular dichroism and ${ }^{1} \mathrm{H}$ NMR spectra in acetonitrile solution. To clarify the intramolecular steric interactions, we have determined the single-crystal structure of (I) by X-ray analysis and present the results here.

(I)

The X-ray analysis of (I) confirmed the presence of a monovalent $\left[\mathrm{Co}\{7-\mathrm{Phsal}-(R)-\mathrm{pn}\}(\text { Meim })_{2}\right]^{+}$complex cation and a perchlorate anion. The space group $P 2_{1} 2_{1} 2_{1}$ is consistent with the fact that the complex has an optically active ligand derived from $(R)-1,2$-propanediamine. The absolute structure was chosen on the basis of the R configuration of the optically pure diamine employed.

In the complex cation, the $\mathrm{Co}^{\mathrm{III}}$ ion is bound to two O and two N atoms of a Schiff base dianion, which form the equatorial plane. Two apical (ap) sites are occupied by N atoms of two 1-methylimidazole ligands, which complete the six-coordinate octahedral structure. The $\mathrm{Co}^{\mathrm{III}}$ ion lies in the equatorial (eq) coordination plane with no significant deviation. The coordination bond distances are comparable with those in the related $\mathrm{Co}^{\text {III }}$ Schiff base complex with two 1-methylimidazole ligands, $\left[\mathrm{Co}\{\right.$ sal-(meso)-stien $\left.\}(\mathrm{Meim})_{2}\right] \mathrm{ClO}_{4} \quad\left[\mathrm{H}_{2}\right.$ sal-(meso)stien is $(R, S)-N, N^{\prime}$-bis(salicylidene)-1,2-diphenylethane-1,2diamine; mean $\mathrm{Co}-\mathrm{O}=1.898$ (4) $\AA, \mathrm{Co}-\mathrm{N}_{\text {eq }}=1.903$ (4) \AA and $\mathrm{Co}-\mathrm{N}_{\mathrm{ap}}=1.957$ (4) \AA; Hirotsu et al., 1996].

Figure 1
A view of the cation of (I). Displacement ellipsoids are drawn at the 50\% probability level and H atoms have been omitted for clarity.

The central $\mathrm{N} \cdots \mathrm{N}$ chelate ring has an envelope-type structure with an $\mathrm{N} 1-\mathrm{C} 27-\mathrm{C} 28-\mathrm{N} 2$ torsion angle of $-14.4(5)^{\circ}$, which is much smaller than the corresponding angle in $\left[\mathrm{Co}\{\text { sal-(meso)-stien }\}(\mathrm{Meim})_{2}\right]^{+} \quad\left[42.5(6)^{\circ}\right]$. The negative sign of this torsion angle in the cation of (I) is indicative of the λ conformation, which differs from the predominant solution structure containing the δ gauche conformation with the methyl group axially disposed. This suggests that the chelate conformation inverts rapidly in solution. The envelope structure and the δ gauche conformation are probably in equilibrium. A λ gauche conformation is unfavourable because of the steric repulsion between the equatorially disposed methyl group on the ethylene backbone and the phenyl group. The envelope structure may have a slightly higher energy than that of the δ gauche conformation, which largely contributes to the circular dichroism and ${ }^{1} \mathrm{H}$ NMR spectra in solution.

Experimental

The title complex was prepared according to the method previously reported by Hirotsu et al. (1996). Single crystals of (I) were obtained by slow evaporation of a dichloromethane-ethanol solution (1:2).

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{ClO}_{4}$
$M_{r}=755.10$
Orthorhombic, $P_{2} 2_{1} 2_{1}$
$a=14.334(2) \AA$
$b=17.766(3) \AA$
$c=13.849(2) \AA$
$V=3526.9(9) \AA^{3}$
$Z=4$
$D_{x}=1.422 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
$M_{r}=755.10$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=14.334$ (2) A
$b=17.766$ (3) A
= 13.849 (2) A
$Z=4$
$D_{x}=1.422 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku AFC-7S diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.783, T_{\text {max }}=0.867$
6564 measured reflections
5671 independent reflections
4120 reflections with $F>4 \sigma(F)$
$R_{\text {int }}=0.012$

Refinement

```
Refinement on \(F^{2}\)
\(R(F)=0.038\)
\(w R\left(F^{2}\right)=0.115\)
\(S=1.04\)
5671 reflections
464 parameters
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0589 P)^{2}\right.\)
    \(+0.3625 P\) ]
    where \(P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3\)
```

The H atoms of the three methyl groups were refined as idealized CH_{3} groups with a rotating motion. All other H atoms were placed in

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

Co1-O1	$1.880(3)$	$\mathrm{Co} 1-\mathrm{N} 2$	$1.889(3)$
$\mathrm{Co} 1-\mathrm{O} 2$	$1.887(3)$	$\mathrm{Co} 1-\mathrm{N} 3$	$1.950(2)$
$\mathrm{Co} 1-\mathrm{N} 1$	$1.898(3)$	$\mathrm{Co} 1-\mathrm{N} 4$	$1.927(2)$
O1-Co1-O2	$87.3(1)$	$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 4$	$89.3(1)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$93.6(1)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$	$85.8(1)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2$	$179.4(1)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 3$	$92.5(1)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 3$	$88.8(1)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 4$	$90.0(1)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 4$	$89.9(1)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 3$	$91.3(1)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 1$	$178.8(1)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 4$	$90.0(1)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 2$	$93.3(1)$	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 4$	$177.25(10)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 3$	$88.3(1)$		
$\mathrm{N} 1-\mathrm{C} 27-\mathrm{C} 28-\mathrm{N} 2$	$-14.4(5)$		

fixed positions by assuming $\mathrm{C}-\mathrm{H}$ distances of $0.97\left(\mathrm{CH}_{2}\right), 0.98(\mathrm{CH})$ or $0.93 \AA$ (imidazole CH). All H atoms were treated as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The absolute structure was set by reference to the known chirality of the enantiopure diamine employed.

Data collection: MSC/AFC Diffractometer Control Software (MSC, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1186). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fiammengo, R., Bruinink, C. M., Crego-Calama, M. \& Reinhoudt, D. N. (2002). J. Org. Chem. 67, 8552-8557.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Förster, S., Rieker, A., Maruyama, K., Murata, K. \& Nishinaga, A. (1996). J. Org. Chem. 61, 3320-3326.
Hirotsu, M., Kojima, M., Nakajima, K., Kashino, S. \& Yoshikawa, Y. (1994). Chem. Lett. pp. 2183-2186.
Hirotsu, M., Kojima, M., Nakajima, K., Kashino, S. \& Yoshikawa, Y. (1996). Bull. Chem. Soc. Jpn, 69, 2549-2557.
Kitaura, E., Nishida, Y., Ōkawa, H. \& Kida, S. (1987). J. Chem. Soc. Dalton Trans. pp. 3055-3059.
Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1999). TEXSAN. Version 1.11. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Mukaiyama, T. \& Yamada, T. (1995). Bull. Chem. Soc. Jpn, 68, 17-35.
Nishinaga, A., Tajima, K., Speiser, B., Eichhorn, E., Rieker, A., OhyaNishiguchi, H. \& Ishizu, K. (1991). Chem. Lett. pp. 1403-1406.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

